Intel will advance Moore's Law for the foreseeable future, but keeping up with it is becoming more challenging as chip geometries shrink, according to a company executive.
Moore's Law is based on a theory that the number of transistors that can be placed on silicon doubles every two years, which brings more features on chips and provides speed boosts. Using Moore's Law as a baseline, Intel for decades has added more transistors while reducing the size and cost of a chip. The manufacturing advances help make smartphones, tablets and PCs faster and more power efficient.
But as chips get smaller, maintaining pace with Moore's Law is perhaps more difficult today than it was in years past, said William Holt, executive vice president and general manager of Intel's Technology Manufacturing Group, during a speech at the Jeffries Global Technology, Media, and Telecom Conference this week.
"Are we closer to an end than we were five years ago? Of course. But are we to the point where we can realistically predict that end, we don't think so. We are confident that we are going to continue to provide the basic building blocks that allow improvements in electronic devices," Holt said.
The end of the industry's ability to scale chips down in size has "been a topic on everybody's mind for decades," Holt said, but dismissed arguments by observers and industry executives that Moore's Law was dead. Some predictions about the law were short-sighted, and the paradigm will continue to apply as Intel scales down chip sizes, Holt said.
"I'm not here to tell you that I know what's going to happen 10 years from now. This is much too complicated a space. At least for the next few generations we are confident we don't see the end coming," Holt said, talking about generations of manufacturing processes.
Moore's Law was first established in 1965 by Gordon Moore, who co-founded Intel in 1968 and ultimately became CEO in 1975. The original paper on the law, published in Electronics magazine in 1965, focused on the economics related to cost-per-transistor, which would come down with scaling.
"The fact that now as we look at the future, the economics of Moore's Law ... are under considerable stress is probably appropriate because that is fundamentally what you are delivering. You are delivering a cost benefit each generation," Holt said.
But Holt said that manufacturing smaller chips with more features becomes a challenge as chips could be more sensitive to a "wider class of defects." The sensitivities and minor variations increase, and a lot of attention to detail is required.