Trade Resources Industry Knowledge Direct Laser Engraving of Flexographic Plates and Cylinders

Direct Laser Engraving of Flexographic Plates and Cylinders

Direct laser engraving of flexographic plates and cylinders

Direct laser engraving of flexographic printing cylinders and plates has been an established process since the 1970s. This first began with the use of a carbon dioxide laser used to selectively ablate or evaporate a variety of rubber plate and sleeve materials to produce a print ready surface without the use of photography or chemicals. With this process there is no integral ablation mask as with direct photopolymer laser imaging (see below). Instead a high-power carbon dioxide laser head burns away, or ablates, unwanted material. The aim is to form sharp, relief images with steep first relief and contoured shoulder supported edges to give a high standard of process color reproduction. A short water wash and dry cycle follows, which is a lot less involved than in the post-processing stages for direct laser imaging or conventional flexo platemaking using photopolymer plates. After engraving, the photopolymer is exposed through the imaged black layer and washed out in the traditional photopolymer process requiring photography and chemicals. See below.

Before the year 2000 lasers only produced lower quality in rubber-like materials. In these rubber-like materials, which had a rough structure, higher quality was impossible. Since the year 2000 fiber lasers have been introduced to give a much increased engraving quality direct into black polymeric materials. Also at the Drupa 2004 the direct engraving of polymer plates was introduced. This had also an effect on the rubber-developers who, in order to stay competitive, developed new high quality rubber-like materials. The development of suitable polymeric compounds has also allowed the engraving quality achievable with the fibre lasers to be realised in print. Since then direct laser engraving of flexo-printingforms is seen by many as the modern way to make printing-forms for it is the first real digital way.

As a competitive process, more recently laser system have been introduced to selectively engrave the thin opaque black layer of a specially produced photopolymer plate or sleeve.

Direct photopolymer laser imaging

Closely related is the direct imaging of a digital flexo plates or sleeves 'in-the-round' on a fast-rotating drum, or cylinder. This is carried out on a platesetter integrated within a digital prepress workflow, that also supports digital proofing. Again, this is a filmless process, which removes one of the variables in obtaining the fine and sharp dots for screened affects, including process color printing.

With this process the electronically-generated image is scanned at speed to a photopolymer plate material that carries a thin black mask layer on the surface. The infrared laser-imaging head, which runs parallel to the drum axis, ablates the integral mask to reveal the uncured polymer underneath. A main ultraviolet exposure follows to form the image through the mask. The remaining black layer absorbs the ultraviolet radiation, which polymerizes the underlying photopolymer where the black layer has been removed. The exposed digital plate still needs to be processed like a conventional flexo plate. That is, using solvent-based washout with the necessary waste recovery techniques, although some water-washable digital plates are in development. This technology has been used since 1995 and is only now becoming more widely used around the world as more affordable equipment becomes available. Trade sources say there are around 650 digital platesetters installed in label, packaging and trade platemaking houses.

Laser engraving of anilox rolls

Prior to 1980 anilox rolls were produced by a variety of mechanical processes. These metal anilox rolls were sometimes sprayed with ceramic to prolong their life in the flexographic printing press. During the 1980s laser engraving systems were produced which used a carbon dioxide laser to engrave the required cell pattern directly into the polished ceramic surface. Since then Q-switched YAG lasers were used for a period as they provided a more focusable laser beam as well as increased pulsing frequencies capable of engraving the finer cell configuration demanded by the ever evolving flexographic printing process. Since approximately the year 2000 the direct anilox laser engraving process has been dominated by the use of fibre lasers which provide the high powers of the carbondioxide lasers together with the finely focusable beam of the YAG lasers. Optical systems providing the rapid switching of multiple beams have allowed the fibre laser system to be dominant in this market. This technology has become known as Multi-Beam-Anilox or MBA.

Sub-surface laser engraving (SSLE)

Sub-surface laser engraving is the process of engraving an image in a transparent solid material by focusing a laser below the surface to create small fractures. Such engraved materials are of high-grade optical quality (suitable for lenses, with low dispersion) to minimize distortion of the beam. BK7 glass is a common material for this application. Plastics are also used.

Since its inception in the late 1990s, SSLE has become more cost effective with a number of different sized machines ranging from small (~US$35,000–60,000) to large production sized tables (>US$250,000). Although these machines are becoming more available, it is estimated that only a few hundred are in operation worldwide.Many machines require very expensive cooling, maintenance and calibration for proper use. The more popular SSLE engraving machines use the Diode Pumped Solid State or DPSS laser process.The laser diode, the primary component which excites a pulsed solid state laser, can easily cost one third of the machine itself and functions for a limited number of hours,although a good quality diode can last thousands of hours.

In the past five years, use of SSLE has become more cost effective to produce 3D images in souvenir 'crystal' or promotional items with only a few designers concentrating on designs incorporating large or monolithic sized crystal. A number of companies offer custom made souvenirs by taking 3D pictures or photos and engraving them into the crystal. Quality of the designs and images varies greatly between vendors in the promotional and personal services sector (photo engravers) – the mass producing curio vendors have the habit of reducing resolution of the points and lowering output to maximize their laser diode's lifespan.

Source: http://en.wikipedia.org/wiki/Laser_engraving
Contribute Copyright Policy
Industrial Applications of Laser Engraving