Researchers in the UK have claimed the first demonstration of laser diodes grown directly on silicon that perform up to 75°C and 120°C under continuous wave (cw) and pulsed operation, respectively [Siming Chen et al, Nature ...
Tags: Quantum dot lasers, GaAs, Silicon substrate, MBE
Researchers in USA and Saudi Arabia have been producing 610nm-wavelength red lasers with III-nitride nanowires (NWs) grown on silicon [Shafat Jahangir et al, Appl. Phys. Lett., vol106, p071108, 2015]. With a view to plastic fiber optical ...
Tags: plastic fiber, Electronics
POET Technologies Inc of Toronto, Canada – which, through subsidiary OPEL Defense Integrated Systems (ODIS Inc) of Storrs, CT, USA, has developed the proprietary planar-optoelectronic technology (POET) platform for monolithic ...
Tags: POET, Electrical, Electronics
Epiwafer foundry and substrate maker IQE plc of Cardiff, Wales, UK says that its epitaxial wafer technology has been used in conjunction with the University of California Santa Barbara (UCSB) to help develop 1.3μm-emitting quantum dot ...
Tags: silicon technology, semiconductor devices, laser components
University of California Santa Barbara (UCSB) and epiwafer foundry IQE Inc have developed 1.3μm-wavelength indium arsenide (InAs) quantum dot (QD) lasers grown on silicon (Si) with “record performance” [Alan Y. Liu et al, ...
Tags: Silicon, `Quantum Dot Lasers
University of Notre Dame (UND) is developing gallium nitride (GaN) quantum dots in aluminium nitride (AlN) as a route to deep ultraviolet (UV) light-emitting diodes (LEDs) [Jai Verma et al, Appl. Phys. Lett., v104, p021105, 2014]. ...
Tags: UV Light Emission, LEDs
University of Tokyo has improved the temperature performance of 1.3μm quantum dot (QD) laser diodes bonded to silicon [Katsuaki Tanabe et al, Appl. Phys. Express, vol6, p082703, 2013]. Photonic circuits are commonly created in silicon, ...
Tags: Quantum Dot Lasers, Electrical, Electronics