Pixelligent Technologies, a manufacturer of nanocrystal additives for the electronics and semiconductor markets, last week announced the launch of its PixClear Zirconia nanocrystals. When incorporated into existing products, the nanoadditives can dramatically increase light output and readability of modern touch screens and displays. PixClear, Pixelligent officials say, also increases the light output of products for lighting applications such as HB-LEDs and OLEDs.
Prior to Pixelligent, nanocrystal dispersions suffered from aggregation and were cloudy, difficult to process, and unstable, which prevented their commercial adoption. But Pixelligent officials claim their PixClear dispersions are something new: they're perfectly clear. These clear dispersions allow Pixelligent to deliver precise control over the target applications' optical, chemical and mechanical properties.
"Pixelligent is at the forefront of developing nanotechnology innovations that will revolutionize light management in display and lighting applications," said Craig Bandes, President and CEO of Pixelligent. "The launch of PixClear is a great example of our ability to identify a need in the industry and then create a high-quality and scalable solution that will dramatically impact the performance of numerous end-products."
Pixelligent's PixClear nanocrystal dispersions have been tailored to be compatible with a wide variety of monomers and polymers. PixClear's synthesis and surface modification technology produces high-quality dispersions that can be incorporated into many of the most widely used polymer systems. This enables highly transparent formulations with nanocrystal loadings in excess of 80 percent weight, while reaching a refractive index as high as 1.85, levels that are unmatched in the industry to date. Additionally, it provides great flexibility for index matching dissimilar materials and when using modern high-speed polymer film forming techniques.
In their official release, Pixelligent claims the advantages of PixClear nanoadditives include a high refractive index, high transparency at visible wavelengths, low haze coating, improve scratch resistance, and an easy integration into existing manufacturing processes.