Not fazed by a takeover battle looming on the sidelines, members of Dell's research division are putting together the pieces for prototype ARM supercomputers that could be deployed in the future.
Dell has a good idea what an ARM supercomputer would look like, and prototype designs and other "parts" are being experimented with in Dell's laboratories, said Tim Carroll, director at Dell's research computing group.
"It is a solution right now looking for a problem," Carroll said. "ARM is going to have a place. The market is going to tell us what that is."
ARM processors go into most smartphones and tablets and are attracting interest for use in servers. The power-efficient CPUs could help cut energy consumed by servers in data centers while bringing enough processing power to handle fast-moving Web search or social-networking requests. Dell is already offering low- to midrange prototype ARM servers for customers to play with.
Depending on workloads, ARM processors could find limited use in supercomputers, Carroll said. ARM processors will deliver dollar savings per FLOP (floating point operations per second) per rack, and some institution will take a leap of faith and use ARM processors in a supercomputer, Carroll said.
Some of the world's fastest supercomputers use x86 processors from Intel or Advanced Micro Devices, Power processors from IBM or Sparc processors from Oracle. ARM processors are currently not considered powerful enough for supercomputers, which are mostly used by research organizations running complex calculations.
The inability to pass a certain processing capability threshold is a handicap for ARM in supercomputing, but Carroll noted that the market can change swiftly, as witnessed by graphics processors, which are now a key co-processor alongside CPUs in supercomputers.
"Do not presuppose you understand all the different use cases that are out there," Carroll said.
The use case for ARM processors has yet to be determined, but curious researchers will find answers, Carroll said. In that regard they will be ahead of the commercial sector, which has deployment cycles and deadlines to keep in mind, Carroll said.
The supercomputing market is also changing with the emergence of the cloud, which could influence the way systems are built, Carroll said. Complex calculations may be done in remote servers, with the cloud being the mechanism for the request and delivery of information.
"We are going to get there. Cloud as a transport mechanism to tie together all these big infrastructure implementations is going to have to happen," Carroll said.
ARM processors are also inexpensive, especially when compared to FPGAs (field programmable gate arrays), Carroll said. FPGAs are reprogrammable circuits used in many supercomputers.