According to reports, researchers at the Georgia Institute of Technology have developed a sensor device capturing signatures with tiny piezo-phototronic LEDs, that's to say, the device converts mechanical pressure from a signature or a fingerprint directly into light signals that can be captured and processed optically.
The sensor device could provide an artificial sense of touch, offering sensitivity comparable to that of the human skin. Beyond collecting signatures and fingerprints, the technique could also be used in biological imaging and micro-electromechanical (MEMS) systems. Ultimately, it could provide a new approach for human-machine interfaces.
“You can write with your pen and the sensor will optically detect what you write at high resolution and with a very fast response rate,” said Zhong Lin Wang, Regents’ professor and Hightower Chair in the School of Materials Science and Engineering at Georgia Tech. “This is a new principle for imaging force that uses parallel detection and avoids many of the complications of existing pressure sensors.”
“When you have a zinc oxide nanowire under strain, you create a piezoelectric charge at both ends which forms a piezoelectric potential,” Wang explained. “The presence of the potential distorts the band structure in the wire, causing electrons to remain in the p-n junction longer and enhancing the efficiency of the LED.”
The efficiency increase in the LED is proportional to the strain created. Differences in the amount of strain applied translate to differences in light emitted from the root where the nanowires contact the gallium nitride film.