Trade Resources Industry Knowledge HID Lamps Are a Type of Electrical Lamp

HID Lamps Are a Type of Electrical Lamp

Tags: HID

High-intensity discharge lamps (HID lamps) are a type of electrical lamp which produces light by means of an electric arc between tungsten electrodes housed inside a translucent or transparent fused quartz or fused alumina arc tube. This tube is filled with both gas and metal salts. The gas facilitates the arc's initial strike. Once the arc is started, it heats and evaporates the metal salts forming a plasma, which greatly increases the intensity of light produced by the arc and reduces its power consumption. High-intensity discharge lamps are a type of arc lamp.

High-intensity discharge (HID) lamps make more visible light per unit of electric power consumed than fluorescent and incandescent lamps since a greater proportion of their radiation is visible light in contrast to heat.

Construction
Various types of chemistry are used in the arc tubes of HID lamps, depending on the desired characteristics of light intensity, correlated color temperature, color rendering index (CRI), energy efficiency, and lifespan. Varieties of HID lamp include:

Mercury vapor lamps
Metal halide (MH) lamps
Ceramic MH lamps
Sodium vapor lamps
Xenon short-arc lamps
The light-producing element of these lamp types is a well-stabilized arc discharge contained within a refractory envelope arc tube with wall loading in excess of 3 W/cm² (19.4 W/in²).

Mercury vapor lamps were the first commercially available HID lamps. Originally they produced a bluish-green light, but more recent versions can produce light with a less pronounced color tint. However, mercury vapor lamps are falling out of favor and being replaced by sodium vapor and metal halide lamps.

Metal halide and ceramic metal halide lamps can be made to give off neutral white light useful for applications where normal color appearance is critical, such as TV and movie production, indoor or nighttime sports games, automotive headlamps, and aquarium lighting.

Low-pressure sodium vapor lamps are extremely efficient. They produce a deep yellow-orange light and have an effective CRI of nearly zero; items viewed under their light appear monochromatic. This makes them particularly effective as photographic safe lights. High-pressure sodium lamps tend to produce a much whiter light, but still with a characteristic orange-pink cast. New color-corrected versions producing a whiter light are now available, but some efficiency is sacrificed for the improved color.


Ballasts for discharge lampsLike fluorescent lamps, HID lamps require a ballast to start and maintain their arcs. The method used to initially strike the arc varies: mercury vapor lamps and some metal halide lamps are usually started using a third electrode near one of the main electrodes while other lamp styles are usually started using pulses of high voltage.

Replacements for the toxic mercury in the HID lamps have been investigated and are a matter of ongoing research. Experiments show promising results and widespread future applications are expected.

Applications
HID lamps are typically used when high levels of light over large areas are required, and when energy efficiency and/or light intensity are desired. These areas include gymnasiums, large public areas, warehouses, movie theaters, football stadiums, outdoor activity areas, roadways, parking lots, and pathways. More recently, HID lamps have been used in small retail and even residential environments because of advances in reduced lumen bulbs. Ultra-High Performance (UHP) HID lamps are used in LCD or DLP projection TV sets or projection displays as well.

HID lamps have made indoor gardening practical, particularly for plants that require high levels of direct sunlight in their natural habitat; HID lamps, specifically metal halide and high-pressure sodium, are a common light source for indoor gardens. They are also used to reproduce tropical intensity sunlight for indoor aquaria.

Most HID lamps produce significant UV radiation, and require UV-blocking filters to prevent UV-induced degradation of lamp fixture components and fading of dyed items illuminated by the lamp. Exposure to HID lamps operating with faulty or absent UV-blocking filters causes injury to humans and animals, such as sunburn and arc eye. Many HID lamps are designed so as to quickly extinguish if their outer UV-shielding glass envelope is broken.

Beginning in the early 1990s, HID lamps have been employed in motor vehicle headlamps. This application has met with mixed responses from motorists, who appreciate the improved nighttime visibility from HID headlamps but object to the glare they can cause. Internationalized European vehicle regulations require such headlamps to be equipped with lens cleaners and an automatic self-leveling system to keep the beams aimed correctly regardless of vehicle load and altitude, but no such devices are required on motorcycles, or in North America, where ECE regulations are inapplicable and inherently more glaring beam patterns are also permitted. The fitting of HID conversion kits (which include HID lamps that fit into original headlamp units in place of the original bulbs with no change to the headlamp's lens, reflector or housing) generally results in extremely high levels of glare, and is illegal throughout most of the world. However, complete halogen headlamp units can be replaced with complete HID headlamp units, provided that the replacement headlamp units comply with the applicable standards.

HID lamps are used in high-performance bicycle headlamps as well as flashlights and other portable lights, because they produce a great amount of light per unit of power. As the HID lights use less than half the power of an equivalent tungsten-halogen light,[citation needed] a significantly smaller and lighter-weight power supply can be used.

HID lamps have also become common on many aircraft as replacements for traditional landing and taxi lights.

HID lamps are also used in lamps for underwater diving. The higher efficacy of HID lamps compared to halogen units means longer burn times for a given battery size and light output.
 

Source:
Contribute Copyright Policy
High-Intensity Discharge Lamp
Topics: Lighting