Trade Resources Industry Knowledge Automotive Headlamp Applications Using LED Have Been Undergoing Very Active Development

Automotive Headlamp Applications Using LED Have Been Undergoing Very Active Development

Automotive headlamp applications using light-emitting diodes (LEDs) have been undergoing very active development since 2004. The first series-production LED headlamps were factory-installed on the Lexus LS 600h / LS 600h L presented in 2007 for 2008 models. Low beam, front position light and sidemarker functions are performed by LEDs; high beam and turn signal functions use filament bulbs. The headlamp is supplied by Koito. Full-LED headlamps supplied by AL-Automotive Lighting were fitted on the 2008 V10 Audi R8 sports car except in North America. The Hella headlamps on the 2009 Cadillac Escalade Platinum became the first U.S. market all-LED headlamps. Designs as of MY2010, such as those available as optional equipment on the 2010 Toyota Prius, give performance between halogen and HID headlamps, with system power consumption slightly lower than other headlamps, longer lifespans and more flexible design possibilities. As LED technology continues to evolve, the performance of LED headlamps is predicted to improve to approach, meet, and perhaps one day surpass that of HID headlamps.

The limiting factors with LED headlamps presently include high system expense, regulatory delays and uncertainty, and logistical issues created by LED operating characteristics. As a semiconductor, the performance of an LED is dependent on its temperature; a given diode will produce more light at a low temperature than at a high temperature. Thus, in order to maintain a constant light output, the temperature of an LED headlamp must be kept relatively stable. LEDs are commonly considered to be low-heat devices due to the public's familiarity with small, low-output LEDs used for electronic control panels and other applications requiring only small amounts of light; however, LEDs actually produce a significant amount of heat per unit of light output. Rather than being emitted together with the light as is the case with conventional light sources, an LED's heat is produced at the rear of the emitters. Unlike incandescent and HID bulbs, LEDs are damaged by high temperatures; prolonged operation above the maximum junction temperature will permanently degrade the LEDs and ultimately shorten the device's life. The need to keep LED junction temperatures low at high power levels requires thermal management measures such as heatsinks or cooling fans which are typically quite expensive.

Additional facets of the thermal issues with LED headlamps reveal themselves in cold ambient temperatures. Not only can excessively low temperatures lead to the LED's light output increasing beyond the regulated maximum, but heat must in addition be effectively applied to thaw snow and ice from the front lenses, which are not heated by the comparatively small amount of infrared radiation emitted forward with the light from LEDs.

LEDs are increasingly being adopted for signal functions such as parking lamps, brake lamps and turn signals as well as daytime running lamps, as in those applications they offer significant advantages over filament bulbs with fewer engineering challenges than headlamps pose.

Source:
Contribute Copyright Policy
LED Car Light
Topics: Lighting