Trade Resources Industry Knowledge The Diesel Internal Combustion Engine Differs From The Gasoline Powered Otto Cycle

The Diesel Internal Combustion Engine Differs From The Gasoline Powered Otto Cycle

The diesel internal combustion engine differs from the gasoline powered Otto cycle by using highly compressed hot air to ignite the fuel rather than using a spark plug (compression ignition rather than spark ignition). In the true diesel engine, only air is initially introduced into the combustion chamber. The air is then compressed with a compression ratio typically between 15: 1 and 22: 1 resulting in 40-bar (4.0 MPa; 580 psi) pressure compared to 8 to 14 bars (0.80 to 1.4 MPa) (about 200 psi) in the petrol engine. This high compression heats the air to 550 °C (1, 022 °F). At about the top of the compression stroke, fuel is injected directly into the compressed air in the combustion chamber. This may be into a (typically toroidal) void in the top of the piston or a pre-chamber depending upon the design of the engine. The fuel injector ensures that the fuel is broken down into small droplets, and that the fuel is distributed evenly. The heat of the compressed air vaporizes fuel from the surface of the droplets. The vapour is then ignited by the heat from the compressed air in the combustion chamber, the droplets continue to vaporise from their surfaces and burn, getting smaller, until all the fuel in the droplets has been burnt. The start of vaporisation causes a delay period during ignition and the characteristic diesel knocking sound as the vapour reaches ignition temperature and causes an abrupt increase in pressure above the piston. The rapid expansion of combustion gases then drives the piston downward, supplying power to the crankshaft. Engines for scale-model aeroplanes use a variant of the Diesel principle but premix fuel and air via a carburation system external to the combustion chambers. As well as the high level of compression allowing combustion to take place without a separate ignition system, a high compression ratio greatly increases the engine's efficiency. Increasing the compression ratio in a spark-ignition engine where fuel and air are mixed before entry to the cylinder is limited by the need to prevent damaging pre-ignition. Since only air is compressed in a diesel engine, and fuel is not introduced into the cylinder until shortly before top dead centre (TDC), premature detonation is not an issue and compression ratios are much higher. Early fuel injection systems Diesel's original engine injected fuel with the assistance of compressed air, which atomized the fuel and forced it into the engine through a nozzle (a similar principle to an aerosol spray). The nozzle opening was closed by a pin valve lifted by the camshaft to initiate the fuel injection before top dead centre (TDC). This is called an air-blast injection. Driving the three stage compressor used some power but the efficiency and net power output was more than any other combustion engine at that time. Diesel engines in service today raise the fuel to extreme pressures by mechanical pumps and deliver it to the combustion chamber by pressure-activated injectors without compressed air. With direct injected diesels, injectors spray fuel through 4 to 12 small orifices in its nozzle. The early air injection diesels always had a superior combustion without the sharp increase in pressure during combustion. Research is now being performed and patents are being taken out to again use some form of air injection to reduce the nitrogen oxides and pollution, reverting to Diesel's original implementation with its superior combustion and possibly quieter operation. In all major aspects, the modern diesel engine holds true to Rudolf Diesel's original design, that of igniting fuel by compression at an extremely high pressure within the cylinder. With much higher pressures and high technology injectors, present-day diesel engines use the so-called solid injection system applied by Herbert Akroyd Stuart for his hot bulb engine. The indirect injection engine could be considered the latest development of these low speed hot bulb ignition engines. Fuel delivery A vital component of all diesel engines is a mechanical or electronic governor which regulates the idling speed and maximum speed of the engine by controlling the rate of fuel delivery. Unlike Otto-cycle engines, incoming air is not throttled and a diesel engine without a governor cannot have a stable idling speed and can easily overspeed, resulting in its destruction. Mechanically governed fuel injection systems are driven by the engine's gear train. These systems use a combination of springs and weights to control fuel delivery relative to both load and speed. Modern electronically controlled diesel engines control fuel delivery by use of an electronic control module (ECM) or electronic control unit (ECU). The ECM/ECU receives an engine speed signal, as well as other operating parameters such as intake manifold pressure and fuel temperature, from a sensor and controls the amount of fuel and start of injection timing through actuators to maximise power and efficiency and minimise emissions. Controlling the timing of the start of injection of fuel into the cylinder is a key to minimizing emissions, and maximizing fuel economy (efficiency), of the engine. The timing is measured in degrees of crank angle of the piston before top dead centre. For example, if the ECM/ECU initiates fuel injection when the piston is 10 degrees before TDC, the start of injection, or timing, is said to be 10° BTDC. Optimal timing will depend on the engine design as well as its speed and load. Advancing the start of injection (injecting before the piston reaches to its SOI-TDC) results in higher in-cylinder pressure and temperature, and higher efficiency, but also results in elevated engine noise and increased oxides of nitrogen (NOx) emissions due to higher combustion temperatures. Delaying start of injection causes incomplete combustion, reduced fuel efficiency and an increase in exhaust smoke, containing a considerable amount of particulate matter and unburned hydrocarbons. Major advantages Diesel engines have several advantages over other internal combustion engines: They burn less fuel than a petrol engine performing the same work, due to the engine's higher temperature of combustion and greater expansion ratio. Gasoline engines are typically 30 percent efficient while diesel engines can convert over 45 percent of the fuel energy into mechanical energy(see Carnot cycle for further explanation). They have no high voltage electrical ignition system, resulting in high reliability and easy adaptation to damp environments. The absence of coils, spark plug wires, etc., also eliminates a source of radio frequency emissions which can interfere with navigation and communication equipment, which is especially important in marine and aircraft applications. The life of a diesel engine is generally about twice as long as that of a petrol engine due to the increased strength of parts used. Diesel fuel has better lubrication properties than petrol as well. Diesel fuel is distilled directly from petroleum. Distillation yields some gasoline, but the yield would be inadequate without catalytic reforming, which is a more costly process. Diesel fuel is considered safer than petrol in many applications. Although diesel fuel will burn in open air using a wick, it will not explode and does not release a large amount of flammable vapor. The low vapor pressure of diesel is especially advantageous in marine applications, where the accumulation of explosive fuel-air mixtures is a particular hazard. For the same reason, diesel engines are immune to vapor lock. For any given partial load the fuel efficiency (mass burned per energy produced) of a diesel engine remains nearly constant, as opposed to petrol and turbine engines which use proportionally more fuel with partial power outputs. They generate less waste heat in cooling and exhaust. Diesel engines can accept super- or turbo-charging pressure without any natural limit, constrained only by the strength of engine components. This is unlike petrol engines, which inevitably suffer detonation at higher pressure. The carbon monoxide content of the exhaust is minimal, therefore diesel engines are used in underground mines. Biodiesel is an easily synthesized, non-petroleum-based fuel (through transesterification) which can run directly in many diesel engines, while gasoline engines either need adaptation to run synthetic fuels or else use them as an additive to gasoline (e. G., ethanol added to gasohol). Mechanical and electronic injection Many configurations of fuel injection have been used over the past century (1901–2000). Most present day (2008) diesel engines make use of a camshaft, rotating at half crankshaft speed, lifted mechanical single plunger high-pressure fuel pump driven by the engine crankshaft. For each engine cylinder, the corresponding plunger in the fuel pump measures out the correct amount of fuel and determines the timing of each injection. These engines use injectors that are very precise spring-loaded valves that open and close at a specific fuel pressure. Separate high-pressure fuel lines connect the fuel pump with each cylinder. Fuel volume for each single combustion is controlled by a slanted groove in the plunger which rotates only a few degrees releasing the pressure and is controlled by a mechanical governor, consisting of weights rotating at engine speed constrained by springs and a lever. The injectors are held open by the fuel pressure. On high-speed engines the plunger pumps are together in one unit. The length of fuel lines from the pump to each injector is normally the same for each cylinder in order to obtain the same pressure delay. A cheaper configuration on high-speed engines with fewer than six cylinders is to use an axial-piston distributor pump, consisting of one rotating pump plunger delivering fuel to a valve and line for each cylinder (functionally analogous to points and distributor cap on an Otto engine). Many modern systems have a single fuel pump which supplies fuel constantly at high pressure with a common rail (single fuel line common) to each injector. Each injector has a solenoid operated by an electronic control unit, resulting in more accurate control of injector opening times that depend on other control conditions, such as engine speed and loading, and providing better engine performance and fuel economy. This design is also mechanically simpler than the combined pump and valve design, making it generally more reliable, and less loud, than its mechanical counterpart. This system does have have the drawback of requiring a reliable electrical system for operation. Both mechanical and electronic injection systems can be used in either direct or indirect injection configurations. Older diesel engines with mechanical injection pumps could be inadvertently run in reverse, albeit very inefficiently. When this occurs, massive amounts of soot are ejected from the air intake. This was often a consequence of push starting a vehicle using the wrong gear. Large ship diesels are capable of running either direction. Indirect injection An indirect injection diesel engine delivers fuel into a chamber off the combustion chamber, called a pre-chamber or ante-chamber, where combustion begins and then spreads into the main combustion chamber, assisted by turbulence created in the chamber. This system allows for a smoother, quieter running engine, and because combustion is assisted by turbulence, injector pressures can be lower, about 100 bar (10 MPa; 1, 500 psi), using a single orifice tapered jet injector. Mechanical injection systems allowed high-speed running suitable for road vehicles (typically up to speeds of around 4, 000 rpm). The pre-chamber had the disadvantage of increasing heat loss to the engine's cooling system, and restricting the combustion burn, which reduced the efficiency by 5–10 percent. Indirect injection engines were used in small-capacity, high-speed diesel engines in automotive, marine and construction uses from the 1950s, until direct injection technology advanced in the 1980s. Indirect injection engines are cheaper to build and it is easier to produce smooth, quiet-running vehicles with a simple mechanical system. In road-going vehicles most prefer the greater efficiency and better controlled emission levels of direct injection. Indirect injection diesels can still be found in the many ATV diesel applications. Direct injectionDirect injection diesel engines have injectors mounted at the top of the combustion chamber. The injectors are activated using one of two methods - hydraulic pressure from the fuel pump, or an electronic signal from an engine controller. Hydraulic pressure activated injectors can produce harsh engine noise. Fuel consumption was about 15 to 20 percent lower than indirect injection diesels. The extra noise was generally not a problem for industrial uses of the engine. But for automotive usage, buyers had to decide whether or not the increased fuel efficiency would compensate for the extra noise. Electronic control of the fuel injection transformed the direct injection engine. This was pioneered by Fiat in 1986 (Croma). The injection pressure remained around 300 bar (30 MPa; 4, 400 psi), but the injection timing fuel quantity, EGR, and turbo boost are all electronically controlled. This gives more precise control of these parameters, resulting in lowered emissions and quieter, smoother running engines. Unit direct injection Unit direct injection also injects fuel directly into the cylinder of the engine. In this system the injector and the pump are combined into one unit positioned over each cylinder controlled by the camshaft. Each cylinder has its own unit eliminating the high-pressure fuel lines, achieving a more consistent injection. This type of injection system, also developed by Bosch, is used by Volkswagen AG in cars (where it is called a Pumpe-Düse-System—literally pump-nozzle system) and by Mercedes Benz ("PLD") and most major diesel engine manufacturers in large commercial engines (CAT, Cummins, Detroit Diesel, Volvo). With recent advancements, the pump pressure has been raised to 2, 400 bar (240 MPa; 35, 000 psi), allowing injection parameters similar to common rail systems. Common rail direct injection In common rail systems, the separate pulsing high-pressure fuel line to each cylinder's injector is also eliminated. Instead, a high-pressure pump pressurizes fuel at up to 2, 500 bar (250 MPa; 36, 000 psi), in a "common rail". The common rail is a tube that supplies each computer-controlled injector containing a precision-machined nozzle and a plunger driven by a solenoid or piezoelectric actuator. Cold weather Starting In cold weather, high speed diesel engines can be difficult to start because the mass of the cylinder block and cylinder head absorb the heat of compression, preventing ignition due to the higher surface-to-volume ratio. Pre-chambered engines make use of small electric heaters inside the pre-chambers called glowplugs, while the direct-injected engines have these glowplugs in the combustion chamber. These engines also generally have a higher compression ratio of 19: 1 to 21: 1. Low-speed and compressed-air-started larger and intermediate-speed diesels do not have glowplugs and compression ratios are around 16: 1. Some engines (e. G., some Cummins models) use resistive grid heaters in the intake manifold to warm the inlet air until the engine reaches operating temperature. Engine block heaters (electric resistive heaters in the engine block) connected to the utility grid are often used when an engine is turned off for extended periods (more than an hour) in cold weather to reduce startup time and engine wear. Block heaters are also used for emergency power standby Diesel-powered generators which must rapidly pick up load on a power failure. In the past, a wider variety of cold-start methods were used. Some engines, such as Detroit Diesel engines and Lister-Petter engines, used[when? ] a system to introduce small amounts of ether into the inlet manifold to start combustion. Saab-Scania marine engines, Field Marshall tractors (among others) used slow-burning solid-fuel 'cigarettes' which were fitted into the cylinder head as a primitive glow plug. Lucas developed the Thermostart, where an electrical heating element was combined with a small fuel valve in the inlet manifold. Diesel fuel slowly dripped from the valve onto the hot element and ignited. The flame heated the inlet manifold and when the engine was cranked, the flame was drawn into the cylinders to start combustion. International Harvester developed a tractor in the 1930s that had a 7-litre 4-cylinder engine which started as a gasoline engine and ran on diesel after warming up. The cylinder head had valves which opened for a portion of the compression stroke to reduce the effective compression ratio, and a magneto produced the spark. An automatic ratchet system automatically disengaged the ignition system and closed the valves once the engine had run for 30 seconds. The operator then switched off the petrol fuel system and opened the throttle on the diesel injection system. Recent direct-injection systems are advanced to the extent that pre-chambers systems are not needed by using a common rail fuel system with electronic fuel injection. Gelling Diesel fuel is also prone to waxing or gelling in cold weather; Both are terms for the solidification of diesel oil into a partially crystalline state. The crystals build up in the fuel line (especially in fuel filters), eventually starving the engine of fuel and causing it to stop running. Low-output electric heaters in fuel tanks and around fuel lines are used to solve this problem. Also, most engines have a spill return system, by which any excess fuel from the injector pump and injectors is returned to the fuel tank. Once the engine has warmed, returning warm fuel prevents waxing in the tank. Due to improvements in fuel technology with additives, waxing rarely occurs in all but the coldest weather when a mix of diesel and kerosene should be used to run a vehicle. Source: en.wikipedia.org

Source: http://en.wikipedia.org/wiki/Diesel_engine
Contribute Copyright Policy
How Diesel Engines Work