Despite revolutionizing illumination, even top-of-the-line nitride LEDs are far from their maximum efficiency when operating at the high power needed for lighting applications. Logan Williams and Emmanouil Kioupakis at the University of ...
Tags: LEDs, LED Efficiency
Researchers in Russia claim “the first demonstration of an injection quantum well microdisk laser fabricated of III-V materials monolithically grown on silicon (001) substrate” [N. V. Kryzhanovskaya et al, Optics Express, vol. ...
Tags: silicon photonics, Lasers
The UK's University of Cambridge and Japan's National Institute for Materials Science have developed single-photon emission devices using layers of graphene, hexagonal boron nitride (hBN), and transition-metal dichalcogenides (TMDs) [Carmen ...
Imec and Ghent University in Belgium have used aspect ratio trapping (ART) techniques to produce indium gallium arsenide (InGaAs) multiple quantum wells (MQWs) on 300mm-diameter silicon in a ridge format that could be used in future laser ...
Tags: InGaAs MQWs, InGaAs Laser diodes, Imec and Ghent University
Researchers in China have developed indium gallium nitride (InGaN) photovoltaic devices that increase in efficiency with temperature up to 423K [Zhaoying Chen et al, Appl. Phys. Lett., vol109, p062104, 2016]. "The positive efficiency ...
Tags: InGaN solar cells InGaN, MOCVD, positive temperature coefficient
Researchers in China have achieved continuous wave (cw) lasing at room temperature for indium gallium nitride (InGaN) laser diodes (LDs) grown directly on silicon (Si) [Yi Sun et al, Nature Photonics, 10, p595, 2016]. The team from Suzhou ...
Tags: InGaN Laser diodes, cw, SINANO
University of California Santa Barbara (UCSB) in the USA has used limited-area epitaxy (LAE) on semi-polar gallium nitride (GaN) substrates to reduce misfit dislocation (MD) densities in multiple quantum well (MQW) green light-emitting ...
Yale University and University of Illinois Urbana in the USA have improved the efficiency of gallium arsenide phosphide (GaAsP) solar cells on silicon (Si) by reducing threading dislocation densities (TDDs) [Kevin Nay Yaung et al, Appl. ...
Tags: GaAsP solar cells, GaAsP, MBE, MOCVD
University of California Santa Barbara (UCSB) in the USA has developed a monolithic white light-emitting diode (LED) with blue light produced by electrical pumping, and green/'red' by optical pumping from the blue source [S. J. Kowsz et al, ...
South China University of Technology has used low-temperature barriers between indium gallium nitride (InGaN) multiple quantum wells (MQWs) to improve the light output power of light-emitting diodes (LEDs) by 23% to 63.83mW at 65mA [Zhiting ...
Tags: Low-Temperature Barriers, Quantum
The University of Manchester and the University of Cambridge in the UK have been comparing efficiency droop in low-temperature photoluminescence (PL) experiments on non-polar m-plane and polar c-plane indium gallium nitride (InGaN) quantum ...
Researchers at University of California Santa Barbara (UCSB) and Rutgers University in the USA believe that charge polarization in III-nitride materials has not been adequately understood up to now [Cyrus E. Dreyer et al, Phys. Rev. X vol6, ...
Tags: semiconductors, Electronics
Researchers based in Taiwan and USA have increased the modulation bandwidth of indium gallium nitride (InGaN) light-emitting diodes (LEDs) [Jin-Wei Shi, IEEE Electron Device Letters, published online 26 May 2016]. The enhanced bandwidth was ...
French biotech company Meiogenix has entered into an agreement with Lesaffre to develop improved industrial yeast strains using Meiogenix’s recombination technologies. Meiogenix's PhoeniX technology helps in controlling the process ...
Researchers based in China, Singapore and Turkey have used an extremely thin layer of silicon dioxide (SiO2) insulator as a charge inverter in indium gallium nitride (InGaN) light-emitting diodes (LEDs), improving light output power and ...